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ABSTRACT 

 
In our previous work we proposed ENSPART-an ensemble method for DNA motif discovery which partitions 

input dataset into several equal size subsets runs by several distinct tools for candidate motif prediction. The 

candidate motifs obtained from different data subsets are merged to obtain the final motifs. Nevertheless, the 

original ENSPART has several limitations: (1) the same background sequences are used for the calculation 

of Receiver Operating Cost (ROC) of motifs obtained from different datasets. This causes bias because 

different datasets might have different background distribution; (2) it does not consider the duplication of a 

motif and its reverse complement. This causes many redundant motifs in the result set which requires filtering. 

In this work, we extended the original ENSPART to solve those two issues. For the first issue, we employed 

background sequences that is based on the distribution of bases in the input sequences. As for the second 

issue, we employ a "triple" merging strategy to reduce redundant motifs. The evaluation results indicate that 

the two improvements obtain better AUC values in comparison to the original implementation. 
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1. INTRODUCTION  

 
ENSPART (Lee, Choong, & Omar, 2016) is an ensemble approach which utilizes an ensemble of 
7 motif discovery tools for motif prediction. It is designed for tackling large-scale ChIP dataset for 
the discovery of primary motifs in a DNA dataset enriched with motifs. The idea of ENSPART is 
to partition a large-scale ChIP dataset into small subsets and use an ensemble of motif discovery 
tools for motif prediction in each subset. The assumption is the binding sites of a primary 
transcription factor protein is abundance in each of the partitioned subset and thus can be predicted 
by motif discovery tools independently. Furthermore, utilizing many tools for prediction would 
increase the chances of obtaining true motifs. The tools run on each partitioned dataset for motif 
discovery and predicted motifs from individual tool are merged to produce the final motifs. An 
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alignment free method is employed to merge motifs obtained from different data subsets to reduce 
redundancy and groups similar motifs. The merging managed to reduce about 49 to 55% of the 
motifs produced for all the evaluated datasets. The receiver operating curve (ROC) is used to rank 
the candidate motifs before the final motifs selection. Our previous simulation results demonstrated 
ENSPART good performance in comparison to MEME.  
 
Nevertheless, the original implementation of ENSPART has several noticeable weaknesses: 
 
 The calculation of ROC used for ranking of candidate motifs require a set of background 

sequences which does not contain the motifs. In our implementation, we employed the same 
background sequences for the computation of ROC for the ranking of final motifs from 
different datasets. This could be biased since it is not guaranteed the background sequences do 
not contain motifs.  

 The existing merging method does not consider the similarity between the motifs in the forward 
and reverse complement. There could be many redundant motifs due to that.  

 
In this paper, the improvements over the original ENSPART by addressing the two issues above 
will be presented.  
 
This paper is organized as follows. Section 2 provides background of DNA motif prediction 
problem and ENSPART algorithm. Section 3 presents the modifications proposed on the original 
ENSPART algorithm. Section 4 gives the evaluation results of ENSPART using real datasets. The 
last section is discussion and conclusion of this study. 
 
 

2. BACKGROUND 

 
DNA motif discovery can be formulated as a multiple-local-alignment or consensus pattern 
enumeration problem. Given an input DNA dataset which is enriched with motifs, the multiple-
local-alignment is to find optimal multiple alignment of fixed length short sequence segments, 
typically assuming zero, one, or multiple from each input sequences, that optimizes an objective 
function. While consensus pattern enumeration method finds over-represented consensus patterns 
in an input dataset. It does that by enumerating all possible consensuses of a certain length and 
determine which consensus patterns are over-represented in the input dataset as contrast to the 
background sequences. The enumeration can be exhaustive or heuristic in nature. 
 
Ensemble approach for DNA motif discovery involves utilization of several motif prediction tools 
for motif discovery and combine their results by filtering or merging. For a comprehensive review 
of existing ensemble approach for DNA motif discovery readers can refer to (Lihu & Holban, 
2015). Most of the existing ensemble methods use the whole input dataset for prediction by 
multiple motif discovery tools and then merged similar motifs using clustering or heuristics. 
Likewise, ENSPART is an ensemble motif prediction algorithm which employs several motif 
discovery tools for prediction. To enable the tools executes on large-scale dataset, the dataset is 
first partitioned into non-overlapped subsets before tackling each separately by different tools. An 
important step then is to merge similar motifs (possible partially) predicted by different tools from 
different subsets. Figure 1 shows the ENSPART computational pipeline.  
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Figure 1: ENSPART framework 

 
 

The alignment-free method which uses the k-mer frequency vector (KFV) (Xu & Su, 2010) to 
represent each motif is used for determining similar motifs that can be merged. The merging is the 
key-step in ENSPART since it determines the number of final motifs and the motif quality. Key 
decisions that need to be made in the merging step is how to determine which pair of motifs to 
merge, the similarity merging threshold, and the order they are merged. Likewise, it is essential to 
decide how many iterations the motifs should be merged. Once the final motifs are obtained from 
the merging process, the ROC measure is used to rank them for final selection.  
 
 

3. METHOD 

 

3.1.   Datasets 

 

Ten ChIP datasets which previously employed in (Lee et al., 2016) is used in this study.  Table 1 

shows the information on the datasets. 

 

Table 1: Information on Datasets Used for the Benchmark 

Dataset No of sequences Average length of sequence File size 

E2F4 128 543 76K 

OCT4 Ntera 154 553 92K 

p53 542 1186 669.9k 

NRSF 1657 283 528K 

FoxA1 2119 357 828K 

CREB 2342 1141 3.3M 

FoxA2 4051 218 1.3M 

OCT4 7776 461 4.7M 

CTCF 13804 816 12.7M 

STAT1 27470 246 8.1M 

 

3.2.   Motif Discovery 

 
The ENSPART algorithm is similar to our early work (Lee et al., 2016) and it is described briefly 
here. The aim of ENSPART algorithm is to predict the primary motifs (top three) in an input 
dataset. An input dataset is partitioned into three subsets which will be fed to the seven motif 
discovery tools. Each tool runs three (3) times with different parameters to increase the possibility 
of discovering true motifs since they have different characteristics such as lengths, conservation, 
or abundance.  

 

Seven popular motif discovery tools were selected to perform candidate motif prediction. 
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AlignACE (Roth, Hughes, Estep, & Church, 1998), BioProspector (Liu, Brutlag, & Liu, 2001), 
and MEME-ChIP (Machanick & Bailey, 2011) are local search algorithms, MDscan (Liu, 
Brutlag, & Liu, 2002) is enumeration and heuristic search. Weeder (Pavesi, Mauri, & Pesole, 
2001) and AMD (Shi et al., 2011) are pattern enumeration algorithms. With the collection of tools 
having different strengths, it increases the chances of predicting distinct motif characteristics. 
Each tool ran three times with the parameters specified in our previous work (Lee et al., 2016). 
For comparing ENSPART and non-partitioned method, we also ran MEME-ChIP, ChIPMunk 
(Kulakovskiy, Boeva, Favorov, & Makeev, 2010) and RSAT peak-motif (Thomas-Chollier et al., 
2012) on the whole dataset. 

 
In this study, each input dataset was partitioned into 3 non-overlaps partitions with each partition 
size is 10% of the whole dataset.  
 

3.3.   Calculation of ROC 

 
To evaluate the quality of the merged motifs, ROC of the motifs is plotted and its Area Under 
Curve (AUC) value is computed. ROC is a standard method for evaluating a motif’s quality. The 
ROC is a popular evaluation method which has been used for evaluation of tools such as MEME 
(Bailey & Elkan, 1995), GAPWM(Li, Liang, & Bass, 2007), and GimmeMotifs (van Heeringen & 
Veenstra, 2011). 
 
The plotting of the ROC in this study was done by using the rocpwm program bundled with the 
GAPWM tool (Li et al., 2007). rocpwm by default can only accept a maximum of 500 input 
sequences. To cater for the larger sizes datasets, it is modified to allow input of 30k DNA 
sequences. The rocpwm tool requires a dataset that contains the true motifs and a dataset that 
contains the background sequences. 
 
To prepare the background sequences, the tool “fasta-dinucleotide-shuffle” from the MEME Suite 
(Bailey et al., 2009) was used. According to (Zeng, Edwards, Liu, & Gifford, 2016) the tool offers 
more accurate background sequences for evaluation purpose. For each input dataset, its 
corresponding background sequences were generated using the tool. In the original implementation 
(Lee et al., 2016), a background dataset as used by Amadeus(Linhart, Halperin, & Shamir, 2008) 
was used for all the evaluation datasets for the computations of ROC. However, such negative 
dataset is not guarantee to exclude sequences in the positive datasets. 
 
With “fasta-dinucleotide-shuffle'' tool, the background sequences are generated from each input 
dataset which assures they are statistically negative to the target dataset. As a result, the ROC will 
be more reliable than using the same background across the different input datasets. 
 

3.4.   Merging 

 
The original merging algorithm as implemented in ENSPART was used. Nevertheless, in this 
study, the merging is repeated three times consecutively. The justification is that multiple merging 
would find more similar motifs that can be grouped. In this improved version, we also consider the 
forward and reverse complement of the motifs during merging. 
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4. RESULTS WITH DISCUSSION 

 

We ran the seven motif prediction tools on three partitioned datasets. The number of motifs 

predicted by each tool on each dataset is shown in Table 2.  

 

Table 2: Number of Motifs Discovered from the Partitioned Datasets (3 Subsets) 

Datasets MDscan BioProspector Weeder2 MEME-ChIP AMD AlignACE W-AlignACE 

CREB 30 45 172 45 55 0 0 

CTCF 30 45 174 45 55 0 0 

E2F4 30 45 161 45 55 111 262 

FOXA1 30 45 152 45 66 0 496 

FOXA2 30 45 165 45 42 0 325 

OCT4 Ntera 30 45 156 45 81 111 165 

NRSF 30 45 169 45 25 3 290 

OCT4 30 45 168 45 61 0 43 

P53 30 45 171 45 50 28 534 

STAT1 30 45 165 45 60 0 0 

Note: *This table is reproduced from (Lee et al., 2016) 

  
Table 3 shows the number of motifs after triple-merging. Table 3 shows that, after multiple 
merging, the numbers of candidate motifs have reduced significantly of approximately 79 to 83% 
for all datasets. This indicates that large numbers of the candidate motifs are redundant. The triple 
merging has greatly reduced the redundancies. We found repeating three merging steps is sufficient 
to obtain improved results.  
 
To investigate how the multiple merging would affect the motif quality, the ROCs of the best three 
motifs from four of the datasets are shown in Figure 2.  It is noticed that the curves are near to each 
other. It implied that the best three motifs are very similar, which potentially can be merged further. 
The top three motifs from the E2F4 and CREB dataset have rather weak discriminative hits against 
positive and negative input sequences. While for the CTCF and FOXA1 dataset, the top three 
motifs produced have good discrimination between the positive and negative dataset. Figure 3 
shows the sequence logos of the top three motifs obtained from the CREB dataset. They appear to 
be variations of the same motif. 
 

Table 3: Number of Motifs after Each Successive Merging. 
 

Dataset Before merging 1st 2nd 3rd Reduced (%) 

CREB 347 190 113 73 79.0 

CTCF 349 181 109 68 80.5 

E2F4 709 375 216 138 80.5 

FOXA1 834 450 255 139 83.03 

FOXA2 652 348 193 116 82.2 

NRSF 607 322 181 107 82.4 

OCT4 NTERA 633 336 194 114 82.0 

OCT4 392 191 109 71 81.9 

P53 903 483 273 161 82.2 

STAT1 345 170 102 64 81.4 
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Figure 2: Best Three ROCs from the Ensemble Approach. 

  

  

 

Table 4 shows the best Area Under Curve (AUC), worst AUCs, median, average of AUCs, and 

standard deviation from the proposed ensemble approach. The AUC values are calculated based 

on the number of motifs predicted after merging (see Table 3).  

 

Figure 3: The Sequence Logos of the Top 3 Motifs Predicted from the CREB Dataset. 

   

(a) (b) (c) 
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Table 4: Best AUCs, Worst AUCs, Median, Average AUC, and Standard Deviation of the Discovered 

Motifs Using the Ensemble Approach with Partitions. 
 

TF No of motifs Best AUC Worst AUC Median Average AUC* Std Dev 

CREB 73 0.7537 0.3704 0.6069 0.5941 0.0966 

CTCF 68 0.8384 0.3975 0.5612 0.5642 0.1065 

E2F4 138 0.6191 0.4126 0.5261 0.5223 0.0421 

FOXA1 139 0.8721 0.4934 0.5815 0.6127 0.0877 

FOXA2 116 0.8643 0.4727 0.5685 0.6119 0.1038 

NRSF 107 0.7532 0.4816 0.4459 0.6040 0.0802 

OCT4 NTERA 114 0.6670 0.4459 0.5664 0.5651 0.0508 

OCT4 71 0.6847 0.3695 0.5294 0.5290 0.0590 

P53 161 0.9499 0.4137 0.6698 0.6564 0.1063 

STAT1 64 0.6607 0.4871 0.5558 0.5654 0.0446 

Note: *the average AUC is obtained from the average of all motifs produced after merging.  

 
Table 4 shows that the average AUC values are comparatively much lower than the best AUCs. 
Comparing to the original ENSPART, the average AUC values obtained in this study are lower. 
This is because the original ENSPART performed the merging process only once, while in this 
study the candidate motifs are merged three times. Moreover, the merging algorithm used in 
ENSPART does not consider merging of a motif with its reverse complement. As a result, many 
redundant or similar candidate motifs are used for the AUC calculation.  
 
MEME-ChIP outputs three motifs by default for each input dataset. For this experiment, the whole 
set of input sequences is used. In addition, the 30% of each dataset that was used for the ensemble 
approach was also used for motif prediction by MEME-ChIP, ChIPMunk, and RSAT peak-motifs. 
The results are shown in Table 5. 
 
From Table 5, it demonstrates that the best AUC values of ENSPART are better than MEME-ChIP 
(whole) on 9 out of 10 of the datasets, except for the CREB dataset. In addition, MEME-ChIP that 
uses 30% of the datasets has lower AUC values in comparison to both ENSPART and MEME-
ChIP using the whole set. By comparing ENSPART with ChIPMunk, the latter has better AUC 
values on CREB, E2F4, P53, and STAT1 datasets. On the other hand, ENSPART obtained better 
AUC values in comparison to RSAT peak-motifs in all the datasets except NRSF and STAT1. 
 
The findings of this study imply three important points: 
 
 The performances of motif discovery using the partitioning and ensemble approach is a feasible 

way to tackle large-scale datasets. Its performance (in terms of the quality of motifs produced) 
is comparable to using the whole set for motif discovery task; 

 The use of multiple-tools for DNA motif discovery increased the chances of discovery more 
true motifs considering the different characteristics of the motifs enriched in the input datasets; 
and 

 The merging is a key step in determining the quality of the motifs produced by the partitioning 
and ensemble method. 
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Table 5: Comparisons of the Best AUC and Average AUC between ENSPART, MEME-ChIP, 

ChIPMunk, and RSAT-peak-motifs. 

  ENSPART+ MEME-ChIP 

(whole) 

MEME-ChIP+ 

 

ChIPMunk+,* RSAT-peak-motifs+ 

TF Best Avg. Best Avg. Best Avg Best Best Avg No of 

motifs 

CREB 0.7537 0.5941 0.7671 0.7042 0.6943 0.6656 0.8054 0.7306 0.6464 20 

CTCF 0.8384 0.5642 0.8195 0.6804 0.6067 0.5694 0.8381 0.6720 0.6059 20 

E2F4 0.6191 0.5223 0.6018 0.5627 0.5245 0.4813 0.6525 0.5954 0.5006 11 

FOXA1 0.8721 0.6127 0.8717 0.6554 0.5966 0.5639 0.8665 0.8345 0.7390 20 

FOXA2 0.8643 0.6119 0.8446 0.6666 0.5819 0.5438 0.8469 0.8308 0.7587 20 

NRSF 0.7532 0.6040 0.7334 0.6610 0.5351 0.4988 0.7452 0.7653 0.6428 20 

NTERA 0.6670 0.5651 0.6424 0.5791 0.6116 0.5717 0.6351 0.6026 0.5342 20 

OCT4 0.6847 0.5290 0.5541 0.5181 0.6799 0.5762 0.6493 0.6011 0.5506 20 

P53 0.9499 0.6564 0.9473 0.7747 0.7202 0.5639 0.9515 0.8358 0.6214 20 

STAT1 0.6607 0.5654 0.6675 0.5580 0.5650 0.5420 0.6732 0.6653 0.5993 20 
 
Notes: *ChIPMunk only produced a motif for every dataset, therefore there is no average. +employed only 30% of the 

dataset used by ENSPART. The “no of motifs” is the total number of motifs produced by RSAT-peak-motifs. 

 

 

5. CONCLUSION 

 
In this study, we proposed two important modifications on the original ENSPART. The first is to 
use distinct background sequences set, generated based on the input dataset, for the computation 
of ROC points. The second is employed triple merging on the intermediate motif prediction results 
produced by multiple motif discovery tools. The benefit of these two modifications are striking. 
The results show that the AUC values are much improved in comparison to the original 
implementation benchmarked using ten datasets. The lesson learned from this study is that the 
merging step is a key consideration when designing ensemble algorithm for DNA motif discovery. 
In addition, ensemble technique with data partitioning is a feasible way for effective motif 
prediction and enabled the use of classic motif discovery tools (i.e. which was not designed for 
large-dataset), for large-scale motif prediction.  
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